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In steady axisymmetric flows in a closed swirl chamber one can distinguish between the 
swirl flow proper, with components normal to the meridian plane, and a secondary 
flow whose components lie in the meridian plane. One can trace the motion of a particle 
within the meridian plane. The closed path so obtained will be called a streamline, to be 
parametrized by a stream function $. One can distinguish between the flow in a bound- 
ary layer, where the velocity gradient is large, and a core flow, where the velocity and 
temperature gradients are relatively small. The present article is concerned with only 
the core flow. In  high Reynolds number flows in which the streamlines are not closed 
there are three quantities which are constant along the streamlines: the total enthalpy 
(the right-hand side of Bernoulli's equation), the entropy and the moment of momen- 
tum of the particles with respect to the axis of symmetry. These are determined by 
conditions in the entrance cross-section. In  flows with closed streamlines these quanti- 
ties are ultimately determined by the cumulative effects of viscosity and heat con- 
ductivity. Conditions expressing cumulative effects enter the analysis as integrability 
conditions necessary for the existence of a second approximation in a development of 
the flow field with respect to the reciprocal of the Reynolds number. They are re- 
expressed as the balance equations for energy, entropy and angular momentum 
which are to be satisfied on all surfaces $ = constant. One thus obtains an algorithm 
which leads from expressions for the total enthalpy, the entropy and the angular 
momentum as functions of $ to the residuals in the balance equations,'also computed as 
functions of $. The functions with which this algorithm starts must be chosen such 
that the residuals in the balance equations become zero. The secondary flow can 
be arbitrarily slow only if the Prandtl number is $. At the centre of the secondary 
motion the balance equations are linearly dependent. This fact introduces an additional 
free parameter which allows one to compute secondary flows with different speeds. 
The linearized algorithm has the character of a Fredholm integral equation. This 
suggests an iterative solution similar to a Neumann series. The particles experience 
periodic changes of state which can be discussed as thermodynamic cycles. Such an 
analysis shows that the heat inputs occur on average at  lower temperatures than the 
heat outputs. Besides the work that maintains the swirl motion, which is provided by 
shear-force components normal to the meridian plane, one therefore needs additional 
work, provided by the shear-force components within the meridian plane, to maintain 
a secondary motion. Responsible for this state of affairs is the fact that particles 
which do not quite maintain adiabatic temperatures move within a field with a large 
pressure gradient caused by the swirl component. This makes the flow sensitive to 
disturbances in the energy balance. 
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FIQURE I. Prototype of a swirl chamber. 

1. Introduction 
Flow patterns of the kind investigated in the present article arise in the experimental 

arrangement shown in figure 1. The rotation of a disk (which is mounted on a relatively 
thick shaft) generates a velocity field with a rather large component, called the swirl 
component, perpendicular to the meridian plane. The effect of centrifugal forces in the 
boundary layer causes a secondary flow with velocity components in the meridian 
plane to arise. Flow patterns of a similar character can be obtained by tangential 
injection of gas at the surface of a chamber with fixed walls. In  the interior of such 
‘swirl chambers ’ the velocity and temperature gradients are not very large; for high 
Reynolds numbers one can therefore compute the flow field from Euler’s equations of 
motion, i.e. from equations in which viscosity and heat conductivity are neglected. The 
region where this simplification is permissible will be called the core of the flow. At 
the surface of a swirl chamber one has, of course, a boundary layer in which the grad- 
ients are large. 

The fact that particles which belong to the core region stay there permanently has 
the consequence that cumulative effects of viscosity and heat conductivity will play 
a role in the final steady flow, even though the changes caused by them during a limited 
time are very small. For an incompressible flow this problem has been treated by 
Prandtl(l906) and by Batchelor (1956). Novel in the case of a compressible medium is 
the influence of the temperature field, which gives rise to physical phenomena not 
encountered before. The general state of affairs can be described as follows. The core 
flow is computed from equations in whichviscosity and heat conductivity are neglected. 
One then finds that three quantities are constant along the streamlines, namely the 
entropy, the total enthalpy (i.e. the enthalpy at  a fictitious stagnation point belonging 
to the streamline under consideration) and the moment of momentum of a particle 
with respect to the axis of symmetry. For streamlines which are not closed these 
quantities are determined by conditions at  the entrance cross-section of the flow field, 
their changes due to viscosity and heat conduction as the particle passes through the 
flow field being neglible. For closed streamlines this information is, of course, not 
available; it is replaced by the requirement that the cumulative effects of viscosity and 
heat conduction must vanish. These conditions enter the present analysis as inte- 
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grability conditions for the second approximation in a development of the flow field 
with respect to the reciprocal of the Reynolds number. By a subsequent integration 
one obtains an even simpler requirement, namely that momentum balance, energy 
balance and entropy balance must be satisfied for each volume bounded by an axi- 
symmetric surface $ = constant. 

This article outlines the important steps in the development of these relations. 
Moreover, it  discusses certain properties of the resulting algorithm which are import- 
ant for a general understanding as well as for the numerical work. Finally a number of 
examples are discussed. Qualitative insight regarding the properties of such flow fields 
can be obtained by analysing the cycles which the individual particles experience from 
a thermodynamic point of view. For the sake of brevity most of the details of the 
derivations have been omitted; these may be found in Guderley & Greene (1967), 
Guderley, Greene & Valentine (1975) and also in an earlier version of the present 
article (Guderley 1976). 

2. General concepts 
Let x and y respectively be co-ordinates in the direction of the axis of symmetry and 

in the radial direction of an axisymmetric flow field. Velocity components in the x and y 
directions are denoted by u and v. The angular velocity of the particles around the axis 
of symmetry is w. Let q2 = u2 + v2 and let p ,  p, i ,  s and T denote respectively pressure, 
density, specific enthalpy, specific entropy and absolute temperature. The coefficients 
of viscosity are ,u and p1 and the coefficient of heat conduction k .  Besides the equation 
of state of the gas, the flow is governed by the equations of conservation of mass, the 
Navier-Stokes equations and the equation of conservation of energy (here indirectly 
expressed in terms of the entropy changes along the path of a particle). Viscosity and 
heat-conduction effects, regarded as small, are relegated to the right-hand sides: 

a(YFu)lax + a(YPv)/aY = 0, 

p-laplax + uaulax + vaulay = R,, 

p-laplay + uavlax + vavlay = R,, 

ua(y2w)/ax + va(y2w)/ay = R,, 

(2 .1)  

(2.2) 

(2.3) 

(2 .4)  

u a s p x + v a + ~  = R,. (2 .5)  

The functions R,, R2 and R, are the familiar viscosity terms of the Navier-Stokes 
equations written in cylindrical co-ordinates. R, is given by 

where CD is the dissipation function. Separating the dissipation due to the swirl motion 
from that due to the secondary motion, we write 

a) = 0 1 + C D 2 ,  ( 2 . 7 ~ )  
where 

(2 .7b )  

( 2 . 7 ~ )  

@l = Pu(2[u: + 
a, = py"w: + w;). 

+ ( 4 Y ) 7  + [u, + %I2}  -P1 [u, + v, + (v/y)12, 
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To satisfy (2.1), we introduce a stream function by setting 

YPU = +lP - Y P  = $z. (2.8) 

For the flow patterns investigated here the particles move in three-dimensional space 
on toroidal surfaces given by $ = constant. The intersection of such a surface with a 
meridian plane will be called a streamline. Let dl and d n  b line elements in the direction 
of the streamline and in the direction of its normal. One then has 

d( )/dl = - (u /d  a( ,/ax- (4q) a( )lay, 

4 = - (4z) a( ,/ax + ( U / d  a( )lay. 

Using the relation Tds = di-p-ldp, familiar from the thermodynamics, one finds 
from (2.1)-(2.5) 

d(y2w)/dl = - R,, ds/dl= - R4, 

d ( i  + + +y2w2)/dl = - [(u/q) R1+ ( ~ / q )  R2 + wR3 + TRJ.  

The R, vanish for zero viscosity and zero heat conductivity, in which case 

( Y 2 W )  = = [m(+)l4 (2.9) 

i + tq2 + gy2w2 = g2($), (2.10) 

s = q 3 w  (2.11) 

The moment of momentum yzw, the expression i + 4 q2 + 4 y2w2 (which will be called 
the total specific enthalpy) and the entropy s are single-valued functions of x and y .  
After travelling around one streamline one finds oneself at the same point (5, y ) .  
Solutions to the steady equations (2.2)-(2.5) can therefore be found only if the functions 
R, satisfy the integrability conditions 

$ R,dl = 0, f R4dl = 0, (2.12), (2.13) 

(2.14) f [(u/q) R, + (v/q) R, + OR, + TR41 dl = 0, 

where the paths of integration are any line + = constant. 
One expects to be able to compute the flow field by means of a formal development 

with respect to the coefficients of viscosity and heat conductivity if the Reynolds 
number is large. Then one starts with the solutions of the inviscid equations. For this 
computation one needs the functions gi, but at this stage they are arbitrary. If one 
prescribes these functions in some fashion, then the flow field is determined. If the 
coefficients of viscosity and heat conductivity are small then the Ri are small (pro- 
vided of course that the derivatives which occur in the Ri are not large). The right-hand 
sides will therefore modify the inviscid flow by only small amounts. For the first 
approximation it is therefore permissible to compute the R, from the inviscid approxi- 
mation to the flow field. In  the next approximation one would have the task of solving 
(2.2)-(2.5) again, but then the functions on the right appear; they are determined from 
the inviscid flow field. This presupposes that the integrability conditions (2.12)-(2.14) 
are satisfied. These equations require that the integration be carried out along the 
streamlines of the resulting flow field. It is shown in Guderley (1976) that in a consistent 
approximation the integrations can be carried out along the streamlines of the original 
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inviscid flow field. An inviscid flow field for which these integrability conditions are 
violated cannot be considered as a first approximation to a flow field in which a small 
viscosity and heat conductivity are present, for then one cannot find a correction which 
accounts for their effect. Accordingly one must choose the function gi in such a manner 
that the integrability conditions are satisfied. 

An interpretation of the integrability conditions as cumulative effects is not difficult. 
These conditions can be written in a form which has a different, more obvious, physical 
meaning. This is suggested by (2.12). The function R, gives the moment of the viscosity 
forces with respect to the axis of symmetry. This suggests that (2.12) is an expression 
of the law of moment of momentum applied to particles lying between the toroidal 
surfaces $ = constant and $ + d $  = constant. One expects, therefore, that one c m  
derive from (2.12) the law of momentum for all particles that move within a surface 
$ = constant. We proceed as follows. The integral $ R,dl  defines a function of $. We 
integrate this function with respect to $, the dummy variable of integration being 
denoted by 6:  

The point of the flow field where the velocity components u and v are zero will be called 
the centre of the secondary motmion. At this point we set @ = 0. It follows from (2.8) 
that d$/dn = ypq and therefore also d t / d n  = ypq. Thus we write 

The right-hand side can be considered as an area integral in the x, y plane, for dnd l  is 
an area element. Thus one has 

Il($) = YPQR,dXdY> 
A(*, 

where A($)  denotes the area enclosed by the line $ = constant. The expression for 
R, is 

Therefore 
R3 = (YPq)-l[a(Y3P%Jax + a(Y3P%/) /aYl -  

I - I -  

The integrand has a form which allows the application of Gauss’ divergence theorem. 
Thus one obtains 

(2.15) 

The right-hand side indeed gives the moment with respect to the axis y = 0 of the 
viscosity forces exerted on the toroidal surface $ = constant. The requirement Il = 0 
must be satisfied for each value of $. The other integrability conditions are treated in 
an analogous manner. Defining 
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substituting the definition (2 .6)  of R, and applying Gauss’ theorem to part of the 
integrand, one obtains 

J J [ ( ~ Y / T ~ )  (TZ + T;)  + (Y /T)  @I d x d ~ .  
A(*) 

I,($) = rp  (kY/T) [T,dY - T,dxI + 
$=conat 

(2 .16)  

The line integral represents the entropy influx through the surface $ = constant 
while the area integral gives the entropy generation in the interior, which is due to 
heat conduction and dissipation. In  this case the occurrence of an area integral cannot 
be avoided; the introduction of 1. is nevertheless advantageous because it eliminates 
third derivatives of @. 

We define furthermore 

Equation (2.14) is closely related to Bernoulli’s equation, therefore one expects that 
Is will give an expression for the energy balance. It must therefore be possible to 
transform I3 into a surface integral. Details may be found in Guderley & Greene (1967)  
and Guderley (1976).  The part of the integrand in which R,, R, and R3 occur is not in a 
form which permits the immediate application of Gauss’ theorem. Such a form is 
obtained if one splits off an expression which is the negative of the dissipation function 
(which appears in the contribution TR,). The heat-conduction terms are already in a 
form which allows the application of Gauss’ theorem. Ultimately one finds 

Now conditions (2.12)-( 2.14) are replaced by 

11($) = 0, I,($) = 0, 13($) = 0.  (2 .18)  

The physical meaning of these conditions is obvious. If the Navier-Stokes equations 
were exactly satisfied, then corresponding conditions would hold for any toroidal sur- 
face in the flow field. Under the present assumptions this requirement is weakened: 
only surfaces $ = constant need be considered. One is tempted to take these conditions 
as the starting point of the theory, but then they would appear as arbitrary, although 
plausible, postulates, while in the present derivation they are a direct consequence of 
the integrability conditions for the system of perturbation equations. 

3. Steady flow with zero viscosity and heat conductivity 
The primary dependent variables in the subsequent development are the stream 

function $ and the specific enthalpy i. The specific entropy is available as a function 
of $. It is therefore assumed that the thermodynamic state of the particles may be 
expressed in terms of s and i. One has, for instance, p = p ( i ,  s) and therefore 

d p  = (ap/ai),di+ (ap/as),ds. 

We write in accordance with the usual definitions 

caplap), = 1b2. 
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Then, because of the second law of thermodynamics, 

(appi), = p p .  

327 

Using the definition (2.8) of the stream function and also (2.10),  one obtains 

i + ($: + $;/(2Y2P2) = 92($) - 9,($)/2Y2. 

We define a Mach number of the secondary motion by 

M2 = qya2 = (@Z + $;)/(y”W). (3.2) 

The rather lengthy derivation of the differential equation for $ can be found in 
Guderley (1976). The result assumes a familiar form, except for the presence of the 
functions g,, which are usually constant: 

$-m + $-uu - M2/a2) $22 + (2uv/a2) $w + (v2/a2) ?i.,Ul 
= ( ~ u / y )  ( 1 + 91/Zf2a21 + Zf2p2[~g2/d$ - HiY-2dgl/d$ 

+ (d9~/d$) “ P s l f )  9,- (1  - M 2 )  TI- (3.3) 

This equation, in conjunction with (3.1) and of course other equations which define 
auxiliary variables such asp, T, a2, u, v, q and M 2  in terms of the enthalpy i, the entropy 
s = g3(@) and derivatives of @, constitutes the inviscid flow problem. At the outer edge 
of the core region (which presumably coincides with the outer edge of the swirl cham- 
ber) one has @ = constant. This constant is not arbitrary; if the functions gi are given, 
it is indirectly determined by the requirement that $ = 0 a t  the centre of the secondary 
motion. 

For q < a the problem is elliptic; notice that the type of the differential equation does 
not depend upon the swirl component. In  all our computations it is assumed that 
q < a. This restriction is not unrealistic, although the value of a2 becomes small, even 
negative, if y becomes small. The present analysis cannot be carried out for swirl 
chambers which extend to small values of y. 

4. Some properties of the algorithm 
We begin with a relation which is an integral part of the mathematical formulation 

of the problem. Let a subscript m characterize quantities evaluated at the centre of the 
secondary motion. In  appendix B of Guderley et al. (1975) and, specialized to an ideal 
gas, in Guderley (1976), the following relation has been derived: 

- ~ m 1 2 + 1 3 -  (gf/Y2)mIl z= o ( @ ~ ) *  (4.1) 

(The individual terms, for instance I, or 13, are O($) . )  
According to this equation the three balance equations are linearly dependent at  the 

centre of the secondary motion. To arrive at  this result one must solve the equations 
(3.1) and (3.3) for inviscid flow in the vicinity of the centre of the secondary motion. 
Since at  this point u = 0 and v = 0 one obtains Poisson’s equation with a constant 
inhomogeneous term. In the limit $ + 0 the streamlines approach ellipses. One arrives 
at (4.1) by evaluating the expressions I,, I, and I3 for these streamlines to the lowest 
order in @. 

This result is important for the following reason. Consider a swirl chamber with 
fixedgeometry. There are a number of quantities that can be changed in an experiment. 
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One of them is obviously the strength of the swirl component. For problems where 
p = constant this quantity is directly given by g, and is easily changed in the compu- 
tations. In addition one can change the average temperature and the average pressure 
in the swirl chamber. These two quantities are controlled in the equations by the choice 
of a reference state. This becomes most obvious if one considers an ideal gas and 
works with dimensionless quantities. One expects in addition that, within certain 
limits, the speed of the secondary motion can be controlled, for instance by changing 
the conditions in the boundary layer of the swirl chamber. (The control is not com- 
plete; we shall find that for Pr + Q the secondary motion cannot be arbitrarily slow.) 
It is therefore likely that, for a fixed geometry, a fixed reference swirl and a fixed ther- 
modynamic reference state, one can still find a continuous one-parameter family of 
solutions. This additional arbitrariness is due to the relation (4.1). This can be seen by 
the following heuristic argument. The difference between two adjacent solutions of this 
family (technically speaking, the derivatives of the flow quantities with respect to the 
parameter which characterizes the individual solutions within the family) is deter- 
mined by a linear homogeneous problem. This consists of the linearized flow equations 
(3 .1 )  and (3 .3 )  and the linearized balance expressions I,, I2 and 13. For numerical work 
the functions gi are always described by a finite number of parameters (for instance by 
the entries in a table for these functions). The linearized problem ultimately expresses 
the changes in I,, I2 and I3 in terms of the changes in these parameters. For simplicity 
we assume that we use a collocation method. Then one requires that the functions 
I,, I, and I3 vanish for a number of values of $. One thus obtains a linear system of 
equations for the changes in the parameters describing the functions gi. If for $ = 0 
the functions I,, I, and I3 are linearly dependent, then the system becomes degenerate, 
and this fact makes the existence of a solution to the homogeneous problem possible. 
Otherwise a neighbouring solution to a given solution of the flow problem would not 
exist. This is a simplified picture. The relation between changes in the functions I, and 
changes in the functions gi is given by a system of three linear integral equations. In 
this form the problem is investigated in appendix V I  of Guderley & Greene (1967). 
These discussions take into account the character of the kernels, which is somewhat 
special in the vicinity of $ = 0. 

I f  $ = constant then the condition I, = 0 is identically satisfied if one chooses 
g1 = constant. The flow is given by a potential vortex around the axis of symmetry. It is 
natural to ask whether such a flow satisfies in addition the balance equations I ,  = 0 
and I ,  = 0. The inhomogeneous terms in the partial differential equation (3 .3 )  contain 
derivatives dgi/d$. If the secondary flow is very slow then these derivatives must be 
very small. Accordingly one has for such a gas g, N constant and s = g, N constant. 
Then one finds 

I3 = f [py3w(w,dy -wa /dx)+yk(T ,dy -T ,dx) ]+O(q2) .  
$=const 

For p = constant and g, = constant one obtains because of (2.9) 

y-2dx. I $= conat I $=const 
PY3w(wz dY - wy d x )  = 2P9l 

In  the present limiting case the temperature is a function only of y .  One obtains from 
(3.1) 

yk(T ,dy -  T ,dx )  = k q ( g , / y 2 ) d x .  
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Therefore, under the assumption that k is constant, 

y-2dz. 
13 = 9,(2P-kT,)$ $=const 

The Prandtl number is defined by 

Pr = (c ,p) /k .  (4 .3 )  

For an ideal gas T = T ( i )  and then T, = (aT/ai), = l/c,. The terms in I3 of lowest order 
in q2 vanish only if Pr = Q. A corresponding result is found for I,. Only for Pr = & can 
the balance conditions I, = 0 and I3 = 0 be satisfied for arbitrarily slow secondary 
flows. 

It was mentioned above that changes in the functions gi and changes in the functions 
I ,  are related by integral equations. It is possible to derive somewhat more detailed 
information which is useful for numerical work. We restrict ourseIves to cases where 
,u = constant. Then g1 = constant and the condition Il = 0 is identically satisfied. We 
assume that we are in possession of a fairly close approximation to a solution of the 
problem. Let Ag, and AI, denote small changes in the g, and the 4 and denote by a 
prime differentiation with respect to $. Then one has the following linearized relations: 

Al2($) = kll($) A9a%v + klZ($) A9;Cll.l 

To apply these relations one needs a fairly close approximation to the desired solution, 
so that a linearization can be applied. In  practice we have always used as the starting 
approximation for a new flow field data from some other flow field for which the gov- 
erning parameters are close to those of the desired flow field. 

One can try to solve the above system of integral equations by means of a Neumann 
series. The procedure is the following. For each approximation the functions I,($) 
and I,($) are computed. The corrections to g2($) and g3($) must be of such a nature 
that I,($)+A12($) = 0 and 13($)+A13($) = 0. The left-hand sides of the above 
system are therefore known. In  a Neumann series one disregards the contributions of 
the integrals and determines corrections Ag2 and Ag, from the equations 

- Ii")($) = A@)($) = kg)($)  Ag;($)("+l)+ k&($) Ag;($)("+l), (4 .5a)  

- IF)( $) = A@)( $) = $) AgL( $)("+l) + k(") 22 ($1 Ag;($CI-)'"+l' (4 .5b )  

and then repeats the process. The superscripts indicate to which iteration step different 
quantities belong. Of course nothing can be said about the convergence of this pro- 
cedure, unless one has detailed information about the kernels K,. In  this respect we 
have relied on an inspection of the results obtained in consecutive iteration steps. 

To derive expressions for the functions ka($) we study the effect of perturbations in 
the form of delta-functions in Ag, and Ag3 on AIz and AI,. It is practical to use in the 
derivations velocities instead of derivatives of the stream function. Let l/r = $o be the 
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streamline a t  which the delta-perturbations are introduced. We visualize them as a 
narrow layer with large gradients of g2 and g3. The pressure gradient in such a layer is 
O( 1) .  Therefore from the second law of thermodynamics 

dildn = T d s / d n + O ( l )  = T($$+$~)tdg3/d$+O(1) ,  

d T / d n  = Ti dildn + T,ds/dn + O( 1 )  = T($$ + $;)* (q + T,/T) dg3/d$, 

(4 .6a )  

(4.6 b )  

and from (2.10), together with the assumption that g, = constant, 

d(&qz)/dn = dgz/dn - di/dn = ($: + $;)* (dg2/d$ - Tdg,/d$) + O( 1) .  (4 .7)  

Let u = qcos8 and v = qs in8 .  Then 

d( )/dl = - cos 8 a( )/ax - sin 8 a( )lay, d( ) /dn  = -sin 8 a( )/ax + cos 0 a( )lay, 

dx /d l= - cos 8, dyldl = -sin 8. 

Expression (2.17) can be transformed either by a detailed computation or by 
inspection. One then considers a point where v = 0, u = q, so that d x  = -dl ,  d y  = 0, 
a( )/ax = -d(  )/dl and d( ) /dy  = d(  )/En. One finds 

py[2(uuJ d y  - vvuy d x )  + (uv + v,) (vdy - d x ) ]  + ky(  T, d y  - Ty d x )  

= [pyq(dq/dn - q dO/dl) + k y  dT/dn]  dl. 

If (4 .4  b )  is valid then one has 

On the basis of this equation one can identify k,, and k,,. Accordingly we form 

/"+'I3(@) d$ = /"+'d$f (pyqdqldn + y k d T / d n )  dl + O(s). 
90- E @ O - E  $=const 

Substituting (4.6) and (4 .7 )  one obtains 

Hence 

(4.8a) 
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In  the double integral occurring in the expression (2.16) for E,, the area element 
dx dy can be replaced by - dl dn. In  the integrand one encounters the expression 

T: + TE = (dT/dn), + (dT'/dl),. 

Even after integration with respect to dn (or rather d$) this expression is meaningless 
if dT/dn+co. But as we are considering the linearized problem, a jump along the 
streamline $ = $,, is admitted only in the perturbations. For this reason the square of 
a delta-function does not appear. A corresponding discussion for the dissipation 
function Q, gives an analogous result. The integration with respect to $ reduces the 
delta-function in dT/dn to a jump in T .  By forming 

one obtains for the double integral in I, a contribution O(E). We can therefore restrict 
our attention to the line integral in (2.16) : 

c 

Hence 
c 

5. Thermodynamic considerations 
The individual particles undergo periodic changes of state, which can be analysed as 

thermodynamic cycles. In  this manner one can obtain some insight which goes beyond 
the details of a specific example. It is the strength of such discussions that one is solely 
concerned with temperatures and energies while details of the processes become inessen- 
tial. In the inviscid flow equations no entropy change for the individual particles is 
permitted. In  the familiar entropy-temperature graph of thermodynamics the cycle is 
given by a, line s = constant which is traversed back and forth between the tempera- 
ture limits experienced by the particle. A detailed discussion would be concerned with 
the deviations of the cycle from this line caused by heat inputs and outputs at different 
temperatures. Actually we shall not go into these details. We shall determine individual 
contributions to the energy and entropy balances and use these to draw conclusions 
regarding the general nature of the cycles. 

Thermodynamic discussions are based on the abstraction of quasi-equilibrium. 
Losses within the gas are not permissible. All heat additions (positive or negative) are 
assumed to come from outside reservoirs, and all work is performed by outside forces, 
for instance by a piston or body forces acting on the individual particles. Accordingly 
we assume that the gas itself is free of viscosity and heat conductivity, and replace 
their effects by heat inputs or outputs from outside reservoirs and by outside forces 
either acting on the surface of a gas volume or as body forces. 

To identify different energy and entropy inputs or outputs we shall consider the 
balance equations for the interior of rings bounded by surfaces $ = constant. The 
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cycles experienced by the particles within one such ring are not identical. One obtains 
identical cycles (except for a shift in timing) if one considers the particles within a 
hollow ring bounded by surfaces $ = constant and $ + d$ = eonstant. The informa- 
tion for the hollow ring can be derived from that for the full rings (presumably avail- 
able as function of $) by differentiation with respect to $. We have chosen to present 
the data for the full rings because it is these that arise during the computation and 
because the differentiation introduces an element of arbitrariness. In  this section we 
describe the general ideas underlying the breakdown of the energies and entropies. 
Detailed derivations may be found in Guderley et al. (1975). All discussions are carried 
out under the assumption that p = constant, from which it follows that g1 = constant 
and I, = 0. 

The viscosity effects play a dual role. On the one hand they cause a loss (output) of 
mechanical energy and on the other hand they give an input of heat energy. The formu- 
lae expressing the energy balance are (2.14) and (2.17). The second equation arises 
from the first by integration with respect to $. The terms containing the factor p are 
due to viscosity. One should be aware of the fact that the physical interpretations of the 
integrands in the two expressions are different. The expressions R,, R, multiplied by p 
express the components of the body forces due to viscosity acting on a particle. The 
portion A$$[(u/q) R, + (v/q) R, + wR,] d l  can be interpreted as the work per unit time 
performed by the body forces due to viscosity on the particles enclosed by surfaces 
$ = constant and $ = constant + A$. To arrive at (2.17) one splits the integrand into 
a term which has the form of a divergence and a term which is the negative of the 
dissipation function. The first term is converted into a surface integral. The part of the 
mechanical energy (an output) that is dissipated does not appear in I ,  because it is 
cancelled by the input due to the heat energy of the dissipation (which is a portion of 
TR,). The term in I, due to viscosity gives the work performed by the shear forces a t  
the surface $ = constant of the ring. This work must be regarded as work performed 
on the volume of air by outside forces. This work can be immediately separated into 
contributions due to the shear forces of the swirl motion and of the secondary motion. 
The same separation can be made in the dissipation functions; these are the expressions 
0, and 0, defined in (2.7). 

We make a further observation. The swirl motion is represented by a potential 
vortex around the axis of symmetry. For constant p the potential vortex satisfies the 
Navier-Stokes equations. If follows that R, = 0 (and also R, = R, = 0). Nevertheless 
a decomposition of the work done by R, into work done a t  the surface of the ring $ = 
constant and work dissipated in the interior is possible. For the potential vortex these 
two quantities cancel each other. Thus we have the following effects of the viscosity 
forces: input of work by shear forces a t  the surface $ = constant due to the swirl flow, 
output (loss) of mechanical work due to the dissipation pertaining to the swirl flow 
(these two contributions cancel each other and do not appear in the energy balance), 
input of work due to the shear forces of the secondary flow, output (loss) of work due 
to the dissipation of the secondary flow, input of heat due to the dissipation of the 
primary flow and input of heat due to the dissipation of the secondary flow. 

The heat input due to conduction is given by those terms in (2.14) and (2.17) which 
contain the factor k. The expression involving k in  (2.14) appears in a form which allows 
immediately the application of Gauss’ theorem [see (2.6)]. This input can therefore be 
regarded as made from outside reservoirs. Again we try to distinguish between heat 
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conduction due to the swirl motion and due to the secondary motion. This distinction 
is not directly obvious from (2.17); it is indeed somewhat artificial. In  a potential 
vortex without a secondary flow one has a temperature distribution which is easily 
computed. The heat input generated by this temperature distribution is ascribed to the 
swirl motion. The secondary flow will modify this temperature distribution and the 
change of the heat input due to this modification is ascribed to the secondary flow. 

The heat inputs due to the dissipation of the swirl flow and due to heat conduction 
ascribed to the swirl flow can be combined. One obtains a fairly simple expression which 
contains the factor 2 - Pr-l. This is a heat input for Pr > 4 and an output for Pr < 4. 
The modification of the temperature distribution due to the secondary motion is of 
such a nature that this heat input is transferred to the outer wall; it cannot be arbi- 
trarily small unless Pr = 4. 

In  the entropy balance the heat energies are subdivided in the same manner, mech- 
anical energies playing no role. We always consider the temperature history of the 
particles experienced in the actual flow and determine the entropy changes due to 
various inputs and outputs of heat. We have identified the combined heat input due to 
heat conduction and dissipation of the swirl flow. The entropy changes are then com- 
puted from an area integral. Again a factor 2 - Pr-1 appears. We have also identified 
the heat input due to the dissipation of the secondary flow, thus the corresponding 
entropy input is readily identified. Since the entropy balance equation (2.16) is sup- 
posed to be satisfied, one finds the entropy input due to the heat conduction of the 
secondary flow as the negative of the sum of all other entropy inputs. For detailed 
formulae reference should be made to Guderley et al. (1975) and Guderley (1976). 

6. A remark about the program 
The basic algorithm has two main steps. In  the first the flow field, expressed by the 

functions $(x, y) and i(x, y), is computed for a given shape of the swirl chamber, a given 
constant g1 and given functiom g,($) and g3($). In  the second step one evaluates the 
functions 12($) and I,($). The flow computation has rather great accuracy require- 
ments, for one needs second derivatives of $ in the evaluation of I, and I,. (In usual 
flow computations only first derivatives are needed.) On the other hand an efficient 
procedure is required, for such Aow-field computations are performed very many 
times. Finite-difference methods did not seem well suited under these circumstances. 
The author has chosen an iterative method in which all terms due to compressibility 
are computed from results of the preceding iteration. Thus one is left with the repeated 
solution of Poisson’s equation. This is facilitated by a conformal mapping of the interior 
of the swirl chamber onto the interior of the unit circle. The solution of Poisson’s equa- 
tion is then reduced to a Fourier analysis of the inhomogeneous term and the evaluation 
of integrals. In the examples shown in the present article the cross-section of the swirl 
chamber is a circle with radius 9 and centre x = 0, y = 1. In  this case the mapping is 
trivial. A few examples have demonstrated that the method is indeed effective for a 
non-circular contour. 

In  the flow field so obtained one must find contours $ = constant by interpolation 
and then determine the functions I,($) and I,($) by integrating along these curves. 

The algorithm described so far leads from the functions g2($)  and (g3($) to the 
functions 12($) and I,($). The iteration loop is closed by means of (4.5), which deter- 
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mines the corrections to g2($) and g3($) from the functions I,($) and 13($). For this 
procedure a sufficiently close approximation to the final solution is required, but even 
then convergence is not guaranteed. In  an earlier stage of the work a Newton-Raphson 
procedure was used to close the iteration loop; then closeness of the approximation will 
guarantee convergence. But this approach was prohibitively time consuming. A 
detailed description of the program and of computational experiences may be found in 
Guderley et a,?. (1975).? 

The computations were carried out for an ideal gas with constant ratio of specific 
heats y. The gas constant was R. Except for lengths all quantities were made dimen- 
sionless. Let a subscript zero denote a reference state. One then has 

&/a: = I / ( ? -  I), RTo/ai = I/?. 

Let the actual physical quantities be temporarily characterized by a tilde. We have 
chosen 

u = W O ,  21 = WaOY q = #a,, P = PIPOY $ = $/(Poao), 

Sl($) = #1(J)Ia: = #l($Poao)/~iY 

g2($) = (7 - g2z($pOaO)/a8Y g3($) = (g3($PO aO) - S O ) / R .  

The figures show ll($I.) = exp ( -g3($)) instead of g3(+). 

7. Results 
In  the computed examples it is assumed that one is dealing with an ideal gas and that 

the coefficients of heat conductivity and viscosity are constant. Except for the length 
scale the equations are written in dimensionless form. Besides the shape of the swirl 
chamber one can then change the Prandtl number, the intensity of the swirl (i.e. the 
value of gl) and a third parameter which characterizes the speed of the secondary 
motion. We have chosen for this purpose the value of dg$/d$ at the centre of the second- 
ary motion. Because of (4.1) this determines also dII/d$, but the location of the centre 
of the secondary motion is not fixed in advance, therefore dII/d$ may change from one 
iteration step to the next. 

Some streamline patterns are shown in Guderley eta,?. (1975); they are rather in- 
sensitive to changes in the parameters determining the flow field. More informative 
are curves of dg2/d$ and dll /d$ v.s. $. 

Figures 2 (a)  and (b)  show the effect of varying Prandtl number at fixed values of 
gl and (dg,/d$)+=,. A qualitative understanding of the trends which appear in these 
figures can be obtained in the following manner. We consider as an analogue of the 
secondary motion a plane solid-body rotation. Then there is no secondary dissipation. 
One finds from (4.7) 

d(3q2)/dn = dg,/dn - Tdg3/dn. 

In  this model the streamlines are circles, the normal direction being that of increasing 
r. For a rigid-body rotation q is a predetermined function of r .  By changing dg,/dn and 
dg,/dn while keeping the left-hand side constant, one changes the temperature distri- 

t The author is greatly indebted to Major David Greene and Mrs Marian Valentine, who wrote 
end repeatedly revised his very complex program. Without their great competence and patience 
the work could not have been finished. 
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bution within the flow pattern. To obtain a temperature decrease as one moves to 
larger values of the radius one needs an entropy decrease, i.e. dg,/dn and consequently 
also dg,/dn must become smaller with increasing radius. For Pr = + there is no heat 
input due to combined heat conduction and dissipation of the swirl motion and for 
solid-body rotation the heat input due to the dissipation of the secondary motion 
vanishes too. Therefore the secondary heat conduction must be kero and the secondary 
flow leaves the temperature distribution corresponding to the swirl flow practically 
unchanged. The values of dg2/d$ and dII /d$  for Pr = +in figure 2 are nearly constant. 
As the Prandtl number is increased, the heat input due to the swirl flow is increased 
and then a modification of the temperature gradient due to the secondary flow must 
appear. The average temperature of the outside streamlines will be lowered. This 
explains qualitatively the Prandtl number dependence of the curves shown in figure 2. 

Figures 3 (a)  and ( b )  give curves of dg,/d$ and dII /d$  vs. 9 for Pr = 1, g, = 0.6 and 
different values of dg2/d$ at $ = 0 (the centre of the secondary motion). The curves 
terminate a t  the values of $ which correspond to the boundary of the swirl chamber. 
Conspicuous are the large gradients of dg2/d$ and dll/d+ which appear in the vicinity 
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of the wall for slow secondary flows (small values of the maximal value of $). The trend 
is even more pronounced for larger values of gl. (Such curves can be found in Guderley 
et al. 1975.) This is not a wall effect; the wall does not play a role in the present analysis 
and the effect is present only under special circumstances. In  a rigid-body rotation, a 
concentrated heat addition along a circle will cause a negative jump in dg&$ and 
dII/d$. It follows that the large gradients are indicative of a large local heat input. 
Such a heat input can be caused by nonlinear terms in the dissipation of the secondary 
flow. Assume that the flow field is continued beyond the outer contour of the swirl 
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FIG- 3. (a) gi and ( b )  II' 2)s. $ for different values of gi(0). Circular contour, Pr = 1, g1 = 0.6. 

chamber and that for a streamline $ = which lies in this continuation dg2/d$ and 
dII/d$ behave as A P ,  where A$ = - $and a is a negative constant, so far unknown 
Then it follows from the flow equation (3.3) that $zz = c1 A P  and $.yy = c2 A@. The 
factors c1 and cz depend upon the position of the point along the streamline $ = $,,, 
but they do not vanish simultaneously. Terms of this form give contributions to the 
dissipation function of the form A$2a. The subsequent integration with respect to ~ 

required in the expression for Iz leads to a term of the form A$2a+l. In  the discussion in 
the last part of $4, these terms did no appear because there the expression had been 
linearized. Without a linearization these terms would have generated the square of a 
delta-function. In  these discussions another term caused by dg3/d$ was found to be 
dominant, being O ( A F ) .  Neither of these two terms will vanish by itself as A$+ 0; 
they must cancel each other. One therefore finds a = - 1. This explains how vertical 
tangents to the curves dg2/d$ and dII/d$ vs. $ can come about (at a pointoutsidethe 
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swirl chamber). The steepness of the curves depends upon the closeness of this point to  
the contour. The explanation is not entirely satisfactory, for it implies that g2 - log A$ 
and I'I N log A$; such (weak) infinities may cause other nonlinear effects. Neverthe- 
less the explanation makes it likely that such large heat additions are compatible with 
the mathematical model investigated here. One must however realize that such large 
local heat additions and viscosity forces violate the underlying assumptions of the 
present analysis. In  the presence of such large gradients the effects of heat conduction 
and viscosity on the flow field may not be negligible. Here the value of the Reynolds 
number is important. 

The flow-field evaluation of course gives the data needed for the computation of the 
boundary layer. The additional requirement that the boundary-layer streamlines be 
closed will ultimately determine the free parameters of the core flow. This analysis has 
not been carried out. The actual temperature distribution does not deviate much from 
the temperature distribution computed for the swirl flow alone. 

Figure 4 shows the velocity of the secondary flow along the y axis for PT = 1, g, = 0-6 
and different values of the parameter (dg,/d$),,=,. The points of intersection of the y 
axis with the boundary of the swirl chamber are given by y = 1-5 and y = 0.5. The 
points where the velocity goes through zero give the centres of the secondary motion. 
The sudden upturn of the curves at  y = 1.5 corresponds to the behaviour of the curves 
of dg2/d$ and dIl/d$. This phenomenon is even more pronounced in the curves for 

12-2 



340 K .  G .  Guderley 

1 

(0) 

Energy 
t 

0.02 ( 

08 

0.06 0.08 

t 

- 1 -  

( c )  

0 0.02 0.04 0.06 0.08 

t 
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qi(0) = 0.2. (a) Inputs due to secondary dissipation. ( b )  Inputs due to combined dissipation and 
heat conduction of swirl flow. (c) Outputs due to secondary heat conduction. (These curves can be 
used to define the average temperatures for the energy inputs.) 

g1 = 0.8, which can be found in Guderley et al. (1975) or Guderley (1976). One would 
expect a similar behaviour at the other boundary point, y = 0.5. The data available at 
present do not show this behaviour, at least not in a clear-cut form. The author does 
not know whether this is due to a, cancellation of different effects or to a lack of resolu- 
tion in the numerical method. Note that these velocity distributions depend only on 
the choice of the functions dg2/d+ and dII/d$, not on the accuracy with which the 
conditions 1% = 0 and I3 = 0 are satisfied. 
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Figures 5-7 give a thermodynamic evaluation of some of the results. For the first 
two figures g, is different and the parameter (dg2/d$) is the same, while in the second 
and the third of these figures g, is the same and (dgz/d$),=, is different. The definitions 
of the different energy and entropy inputs are given in $5. The quantities shown in the 
figures refer to all particles lying within a surface @ = constant. The data for some 
intermediate values of $ = @, are applicable to a swirl chamber which has as outer 
boundary the surface $ = $,. To obtain data for the cycles of the individual particles 
one must differentiate the present data with respect to $ (this has already been ex- 
plained in $5). 

If all energy inputs occurred at a constant temperature To then the energy and the 
entropy curves would be identical, except for a factor l/To. If the inputs occurred a t  a 
temperature lower than To then the entropy curve would lie above the energy curve. 
The graphs show that the main heat inputs come from the combined energy dissipation 
and heat conduction of the swirl flow. This is the expression with the factor 2 - Pr-l. 
Further heat input comes from the dissipation of the secondary flow. The heat conduc- 
tion of the secondary flow is responsible for the heat output. The ratio between the 
energy and entropy curves shows the average temperatures at which these heat 
exchanges take place. On average the heat inputs occur a t  lower temperatures than the 
heat outputs; accordingly one needs, besides the input of mechanical energy required 
to maintain the swirl motion, an input of mechanical energy to maintain the secondary 
flow. This energy input is provided by the shear forces at the surface of the ‘swirl 
chamber’ belonging to the secondary flow. The input of mechanical energy into the 
secondary flow must be larger if the swirl component is larger. 

Figures 8(a) - ( f )  show the decomposition of the energy balance for g, = 0.6 and 
g, = 0.8. Curve 1 gives the energy input due to the combined dissipation and heat 
conduction of the swirl motion. This portion is proportional to 2 - Pr-1. Per unit 
area in the x, y co-ordinate system it is independent of the secondary motion; in the 
curves presented here one finds slight differences because of the differences in the 
streamline shape for the same value Contribution 2 is the mechanical energy 
provided for the secondary flow by the shear forces at the surfaces of the fictitious swirl 
chambers with boundaries given by surfaces $ = constant. Curve 3 gives the energy 
due to the dissipation of the secondary motion; it gives at the same time the heat 
input due to secondary dissipation and the output of mechanical energy, which is 
immediately dissipated. This portion is fairly small. Curve 4 gives the energy output 
due to the heat conduction of the secondary flow. This breakdown shows the relative 
significance of different contributions and the dependence upon the operating condi- 
tions. For a plane problem with a circular cross-section the secondary motion would be 
a rigid-body rotation for which the dissipation vanishes. It is therefore likely that for 
the swirl chamber investigated here, which also has a circular cross-section, the effect of 
the secondary dissipation is fairly small. In  this respect the present results cannot be 
considered as typical. 

One is, of course, interested in identifying the physical mechanism which is res- 
ponsible for these results. In  thermodynamic discussions this mechanism does not 
appear. One encounters a buoyancy effect. The heat inputs occur primarily at low 
temperatures and low pressures, the heat outputs at high temperatures. Particles on 
their paths from low to high pressures have on average a higher temperature than 
those on the return sections of the paths. Because of this temperature difference one 
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needs forces in the flow direction to maintain the secondary motion. They are supplied 
by the shear forces at  the surfaces + = constant and @ = constant + d@. The effect is 
more pronounced if the secondary motion is slow, for then the temperature differences 
will be larger. 

One can draw some general conclusions. The secondary flow is rather sensitive, 
because the energies involved are rather small. For the case of a plane rigid rotation 
no energy at all is needed to maintain it. A slight heating or cooling within the flow 
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field has a profound effect. In  the present investigation this fact manifests itself 
through the dependence of the results on the Prandtl number. If heat sources were 
present within the flow field (for instance in the form of some slow exothermic reaction) 
then their effect would be similar to a change in the Prandtl number. If heat is added 
primarily in the low temperature portion of the cycles then it will impede the secondary 
flow. It may even make an orderly secondary flow of the character considered in this 
article impossible. Heat sources acting primarily on the high temperature portion of 
the cycle will favour the secondary flow. 

This state of affairs implies that the results of the present investigation cannot be 
carried over to flow fields where one interferes with the energy balance, and that experi- 
mental results obtained for flows without heat addition cannot be readily extrapolated 
to flows with heat addition. 

One may think of applying a finite-difference method to the Navier-Stokes equations 
as an alternative to the method shown in the present article. Such methods are attrac- 
tive because they yield the boundary-layer flow and the core flow at the same time. 
The present discussions have a bearing on such methods in the following sense. Fre- 
quently finite-difference methods introduce an artificial viscosity, for instance through 
the very procedure of differencing. This seems to be rather innocuous in portions 
of the flow field where the velocity gradients are small. But we see from the present 
analysis that for flows with closed streamlines the energy balance is decisive. If an 



steady mpressible swirl jlows 347 

artificial viscosity should appear then also a corresponding artificial heat conductivity 
must be present so that the effective Prandtl number is correct. 
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